
1

Situation Assessment in the Paladin Tactical
Decision Generation System

John W. McManus
NASA Langley Research Center

Hampton, Virginia

Alan R. Chappell
Lockheed Engineering and Sciences Company

Hampton, Virginia

P. Douglas Arbuckle
NASA Langley Research Center

Hampton, Virginia

SUMMARY

Paladin is a tactical decision generation system for
air combat engagements. Paladin uses highly
specialized knowledge–based systems and other
Artificial Intelligence (AI) programming techniques to
addresses the modern air combat environment and agile
aircraft in a clear and concise manner. Paladin is
designed to provide insight into both the tactical
benefits and the costs of enhanced agility. The system
was developed using the Lisp programming language
on a specialized AI workstation. Paladin utilizes a set
of air combat rules, an active throttle controller, and a
situation assessment module that have been
implemented as a set of highly specialized knowledge–
based systems. The situation assessment module was
developed to determine the tactical mode of operation
(aggressive, defensive, neutral, evasive, or
disengagement) used by Paladin at each decision point
in the air combat engagement. Paladin uses the
situation assessment module and the situationally
dependent modes of operation to more accurately
represent the complex decision-making process of
human pilots. This allows Paladin to adapt its tactics
to the current situation and improves system
performance. This paper discusses the details of
Paladin’s situation assessment and modes of operation.
The results of simulation testing showing the error
introduced into the situation assessment module due to
estimation errors in positional and geometric data for
the opponent aircraft are presented. Implementation
issues for real–time performance are discussed and
several solutions are presented, including Paladin’s use
of an inference engine designed for real–time execution.

1 INTRODUCTION

A modern and realistic air combat simulation that
can be used to evaluate current and future air combat
environments must have an intelligent system to select
the combat maneuvers to perform throughout an
engagement, called a Tactical Decision Generator
(TDG) , and the ability to model agile aircraft. The

system should have a modular software structure so that
the system can easily support modifications such as:
new weapons systems or aircraft subsystems (e.g.
sensors or propulsion systems), modifications to
aircraft control systems, or changes to the aircraft's
configuration. In support of the study of superagile
aircraft at Langley Research Center (LaRC), a Tactical
Guidance Research and Evaluation System (TiGRES) is
being developed.1,2,3

The TiGRES system is designed to allow
researchers to develop and evaluate aircraft systems in a
tactical environment. The three main components of
TiGRES are a TDG, the Tactical Maneuver Simulator
(TMS), and the Differential Maneuvering Simulator
(DMS). Both the TMS and the DMS use a TDG as the
intelligent automated opponent.

The TMS1,3 provides a high-fidelity batch air
combat simulation environment for the development
and testing of various guidance and control strategies.
The researcher defines the initial conditions of the air
combat engagement and the TMS then controls the
trajectories and attitudes of the aircraft using simple
trajectory commands, or through a tactical decision
generation system. The main elements of the TMS are
a high-fidelity, nonlinear six degree-of-freedom (d.o.f.)
rigid-body aircraft dynamic model, including the control
system, a TDG, and a user interface.

The DMS consists of two 40' diameter domes and
one 20' diameter dome. The facility is intended for the
real-time simulation of air combat engagements
between piloted aircraft. By using a TDG to control
one of the airplanes, it is possible to test a TDG
against a human opponent. This feature allows the
guidance logic to be evaluated against one or more
unpredictable and adaptive human opponents.

While TiGRES is aimed specifically at the
development and evaluation of tactical maneuvering
strategies and advanced guidance/control systems for
superagile aircraft, the modular design of TiGRES will

2

make it easily adaptable to the analysis of other aircraft
systems (e.g. advanced weapons systems, advanced
avionics systems).

2 THE PALADIN SOFTWARE

Paladin is a knowledge-based TDG designed to
provide researchers insight into both the tactical
benefits and the costs of superagility. Knowledge-based
systems use a large amount of information about a
problem's domain to understand and solve that problem.
Paladin was developed in the Lisp programming
language using a Symbolics 3650† workstation.

The development of Paladin has been a multi-stage
process using a baseline version of the Adaptive
Maneuvering Logic 4 (AML) program as the starting
point. Paladin uses the trial maneuver generation and
evaluation concept outlined in the AML program 4

with several extensions. The original set of five to
nine aircraft trial maneuvers used by AML has been
replaced with four sets of positionally dependent trial
maneuvers. Past research 2,3 has shown that the use
of the positionally dependent sets of trial maneuvers
improves overall system performance, allows Paladin
to perform target acquisition and tracking more
effectively, and improves Paladin’s defensive and
evasive maneuvering performance. Paladin uses an
object-oriented programming approach 5 to represent
each aircraft in the simulation. Each aircraft object
includes information on the current state of the
aircraft’s offensive systems (e. g. Guns, missile
systems, fire control radars, ect.), defensive systems
(e.g. electronic counter measures, chaff, ect.), and
propulsion system. This state information is used to
help guide Paladin's reasoning process.

Paladin was designed to utilize modular software
separate subroutines and specialized computer hardware.
The separation of the aircraft simulation and decision
logic components, and the use of highly specialized
knowledge sources, allows each module or knowledge
source to be designed and implemented using the
hardware and programming techniques specifically
suited for its function. The use of highly specialized
and independent knowledge sources also provides for
"modular protection"5, confining the effect of an error
occurring in a module at run-time to that module, or to
a small set of neighboring modules in the program.
The confining effect of the modular protection was used
to aid in the design and debugging process. Each
knowledge source was developed and tested
independently before it was incorporated into Paladin.

† Symbolics 3650 is a registered trademark of
Symbolics Incorporated

The independence of the knowledge sources also
increases the efficiency of Paladin by allowing
knowledge sources to be distributed across a network of
several heterogeneous processors. The network
currently consists of a Symbolics 3650 workstation, a
Symbolics MacIvory† workstation, two SUN†

SPARC class workstations, and several Vax 3200†

class workstations. Communication between the
distributed knowledge sources is achieved using
customized DECNet–based Client/Server software
developed in–house for TiGRES. This software allows
for synchronization, communications, and data sharing
between heterogeneous computers running the DECNet
communications protocol. TCP/IP based
communications software has also been developed in–
house for the SUN workstations. Paladin is
implemented as a serial blackboard system, so no
serialization or concurrency related software is
required6. Each knowledge source requests all of the
data required to perform its computation from the
blackboard at the start of its execution cycle, and posts
its results to the blackboard at the end of its execution
cycle.

2.1 The Paladin Inference Engine

The Paladin knowledge sources use a custom
inference engine (see appendix A) that was designed to
support real-time execution of knowledge–based
systems. The inference engine uses a depth–first
evaluation strategy 5 to search the active rule–bases.
Rule–bases can be partitioned, and the partitions can be
linked using meta–rules (rules used to guide the
activation of rule–bases). Rule–bases can be expressed
in two formats: interpreted lists of condition action
pairs, and compiled lists of in-line function definitions.
The interpreted lists are used to develop and debug the
initial versions of the rule–base. The rule–base is then
“compiled” into a list of in–line functions. The rule–
base compiler is written in Lisp and runs on an AI
workstation. The compiled rule–bases execute
approximately 90 to 100 times faster than the
interpreted rules. The inference engine executes a
representative test rule–base consisting of 40 rules in
the interpreted format in 170 milliseconds. The
inference engine executes the same rule–base in the
compiled format in 1.9 milliseconds.

† MacIvory is a registered trademark of Symbolics
Incorporated.
† SUN is a registered trademark of Sun Microsystems
Incorporated.
† Vax 3200 & DECNet are registered trademarks of
Digital Equipment Corporation.

3

It is important to realize that there is a trade–off
between the length of the rule–base’s longest execution
path and the knowledge source’s execution time. The
shorter the execution path is, the faster the execution
time. The rule–bases used by Paladin have been
partitioned to increase system performance by grouping
related rules into small partitions and using meta–rules
to link the partitions. This partitioning decreases the
number of rules that are active, and decreases the length
of the worst–case execution path through the rule–base.
The rule–base partitioning allows the designer to
calculate the longest and shortest path through the
rule–base and compute both a maximum and minimum
knowledge source execution time. The knowledge
source’s maximum execution time can be used to
insure that the system will meet real–time execution
requirements. If the maximum execution time exceeds
the allocated execution time, the designer may be able
to repartition the rule–base until real–time execution
requirements are achieved.

Paladin uses two rule–bases: a mode selection
rule–base used by the Situation Assessment knowledge
source, and a throttle control rule–base used by the
Active Throttle Controller. The mode selection and
throttle control rule–bases are included in appendices B
and C. The mode selection rule–base consists of four
partitions and contains nineteen rules. The shortest
execution path in this rule–base results in a single rule
being fired; the longest path results in twelve rules
being fired. The throttle control rule–base consists of
ten partitions and contains forty rules. The shortest
execution path in this rule–base results in a two rules

being fired; the longest path results in thirteen rules
being fired.

2.2 Situation Assessment Module

Six modes of operation, shown in table 1, have
been incorporated in Paladin. As shown in Figure 1,
the Situation Assessment knowledge source is executed
at the start of each decision interval, before the
maneuver scoring module. The Situation Assessment
knowledge source uses the mode selection rule–base
(appendix B) to determine the system’s current mode of
operation. This knowledge source is used to model a
pilot’s situational awareness and changing problem–
solving strategies. Just as a pilot will recognize the
difference between an aggressive situation and a evasive
situation and react accordingly, the Situation
Assessment knowledge source provides information
allowing Paladin to adapt its problem–solving strategy
based on the current situation. The determination of
the current mode of operation is based on the aircraft's
current mission, the current state of the aircraft's
systems, the relative geometry between the aircraft and
its opponent, and the opponent's instantaneous-intent
(defined later). Each of the six modes of operations has
a unique vector of scoring weights and a unique
decision interval (∆ sec). The scoring weights2 for each
mode of operation have been adjusted during the design
and testing process to maximize Paladin's performance
in that mode of operation. The testing procedures used
to evaluate Paladin’s performance is described in detail
later in this paper.

4

Relative Geom.
(X, Y, Z)

Predict Opponent's
State at t + ∆sec

Evaluate Trial Maneuvers

Score
 Maneuvers

Best
Maneuver

Control
Commands

Eqs. of
Motion

Perform Situation
Assessment

Guidance Algorithms

Active Throttle Controller

Figure 1. Schematic Of Paladin

Both TMS and DMS test results1,2 have shown
that a short decision interval (0.25 sec.) improves
Paladin’s fine–tracking performance in aggressive
situations, and Paladins maneuvering capabilities in
evasive situations. In neutral or defensive situations
the same short decision interval results in a "thrashing"
motion, degrading system performance. The thrashing
is due to the system overcompensating for small
changes in the opponent’s motion. These thrashing
maneuvers bleed off energy and reduce Paladin’s
effectiveness; thus a longer decision interval is used in
defensive (0.5 sec.) and evasive situations (1.0 sec.).

Table 1. Modes of Operation
Mode Decision Interval

Aggressive 0.25 sec
Defensive 0.5 sec
Evasive 0.25 sec

Ground Avoidance 0.125 sec
Neutral 1.0 sec

Disengage 0.5 sec

The situation assessment knowledge source also
determines the opponents instantaneous-intent. The
opponent's instantaneous-intent is defined to be an
estimation of the opponent's mode of operation at the
current point in time based on Paladin’s available
sensor, positional, and geometric data. Currently, there

is no attempt to use a history of instantaneous-intent
to derive a long-term opponent intent.

LOS
 VECTOR

O
P

P
O

N
E

N
T

OWNSHIP

OPPONENT

VELOCIT
Y

VECTOR

O
W

V
E

L
V

E

DEVIATION
ANGLE

L
O

S

A
N

G
L

E

O
F

F

OPPONENT
X–BODY AXIS

OWNSHIP
X–BODY AXIS

LOS ANGLE

5

Figure 2. Angle Definitions

2 . 2 . 1 Situation Assessment Data

To perform situation assessment, information on
the relative geometry between the two aircraft and
Paladin’s system status is required. This information
is available in the form of participant-specific data
maintained by Paladin. All data relating to the Paladin
aircraft as well as Paladin sensor data (e.g. the
opponent’s relative position) are known exactly. Other
data required about the opponent must be estimated.

The quantities used by the situation assessment
module which are based on exactly known data are
either specific to the Paladin aircraft or are relative
values from the Paladin aircraft’s point of view.
Paladin’s current throttle position and altitude are
parameters taken directly from the current state. Range
is the magnitude of a vector connecting the centers of
gravity of the aircraft. The Line-Of-Sight (LOS) angle
is defined as the angle between the LOS vector and the
ownship body x-axis (figure 2); the deviation angle is
defined as the angle between the LOS vector and the
ownship velocity vector; and the LOS angle off is
defined as the angle between the LOS vector and the
opponent's body x-axis.

The deviation angle is calculated as the inverse
cosine of the magnitude of the projection of the range
into the velocity axis divided by the range. In equation
form,

deviation angle =

arccos []ẋ∆ x + ẏ∆y + ż∆z
(Range) |Velocity|

,

(1)

The line-of-sight angle (LOS) is the inverse cosine of
the magnitude of the projection of the range into the x-
body axis divided by the range, or,

LOS angle =

arccos []D(1,1)∆x + D(1,2)∆y + D(1,3)∆z
Range

,

(2)

where ∆x, ∆y, and ∆z represent the difference between
the two aircraft positions. D(i,j) is the i, j element of
the Paladin body axis direction cosine matrix. Then
the LOS elevation is taken to be the inverse sine of the
opponent’s z-coordinate in the Paladin body axis
system divided by the range, or,

LOS elevation =

arcsin

-z

opponent in Paladin body axis system

Range
.

(3)

The LOS azimuth is the inverse tangent of the
opponent’s y-coordinate divided by the opponent’s x-
coordinate, both in the Paladin body axis system,

LOS azimuth =

arctan

y

opponent in Paladin body axis system

x

opponent in Paladin body axis system

.

(4)

Finally, off corner is the proportion by which Mach
number differs from the instantaneous cornering Mach
number (speed to achieve largest possible turn rate)
calculated for the current altitude,

off corner =

Cornering Mach - Current Mach
Cornering Mach

.

(5)

The velocity / acceleration and orientation of the
opponent must be estimated, since this data would not
be available from realistic Paladin sensors. These
estimates are made using a three point time history of
the known position data and several assumptions about
the opponent aircraft’s aerodynamics (weight, wing
surface area, and flight characteristics). The current
position of the opponent and the opponent’s position
at the preceding two decision cycles are used to find a
quadratic equation for the position as a function of
time. The first and second derivatives of this function
at the current time yield an estimation of the
opponent’s instantaneous velocity and acceleration. By
assuming the aerodynamic characteristics of the
opposing aircraft, and using the velocity and
acceleration estimates, an estimated body-axis
orientation for the opponent can be found.

The quantities used by the situation assessment
module which are based on estimated data are largely
relative values from the opponent aircraft’s point of
view. Each of these quantities has some error
introduced by the estimation process. The range rate is
the magnitude of the projection of the relative velocity
onto the range axis, or,

6

Table 2. Error Statistics
Range Rate Error (ft/sec) Deviation Error (deg) LOS Error (deg)

¯
 X

s ¯
 X

s ¯
 X

s

1.52 0.68 2.06 0.13 8.02 3.05

range rate =
∆ẋ∆ x + ∆ ẏ∆y + ∆ ż∆z

Range
.

(6)

The opponent’s deviation angle and line-of-sight angle
are calculated similarly to the Paladin aircraft
parameters (equations 1 and 2), using the opponent’s
velocity and x-body axis. Paladin’s LOS angle off is
180° - opponent’s LOS angle. The errors between the
actual parameter values and the estimated values were
calculated for a representative set of 32 within–visual-

range engagements3, resulting in the sample means (
¯
 X)

and standard deviations (s) listed in table 2. Figures 3
through 5 show each of these error magnitudes
(absolute value of the actual value minus the estimated
value) during the course of a typical engagement. Error

expectations given in table 2 and magnitudes given in
the figures are based on engagements between Paladin
and an opponent with known aerodynamic
characteristics. If the aerodynamics of the opponent
aircraft are not well known, the error in the LOS angle
should increase, since the error is strongly dependent on
the aircraft flight characteristics.

From the same set of 32 engagements, results
were collected on the sensitivity of the situation
assessment module to these estimation errors. The
correct mode (the mode selected given exact data) of
operation was chosen 98.0% of the time. Hence, this
implementation of the situation assessment knowledge
source is believed to be insensitive to the errors
introduced by data estimation.

•

••
••

••

••••
•
••

•

•

•
•

••
•

•

•
•

•
•••

••
•

•

•
•

•
•

•
•
••

•

•
•••••

•
•
••
••••

••••••
••••

•••

••
•

••••
••
••
•

•

••
•

•

••••
•
•

••

•

••

••

•
•

•

•

•
•••

••
•
•
••
••
••••••

•
•••••

•
•
•
•
•
•••

•
•
•
••
•
•••••

••
•
•
•

•

•••
••
••

••••

•

•
•

•

••

•

•
••

•

•

••

•

•
•••

••

•

•
••

•

•
••
•

•

•

•

•••

•

•••
•

•

•
•

•

•

•

•

•

•
••

•

•

•

•
••

•

•

•

•

•
•

••
•••••

•
•
•

•

•

•

•
•

•

•
•

•
•

•

•

•
•
•

•

•
•

•

•

••
•
•

•
•
•
••

•
•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•
••

•

••

•
•

•

••

•

•
•

•

••
•
•
••

•

•

•

•

•••

•

•

•
•

•

•

••

•

•

•

•

•

•

•

••
••

•

•

•
•

•

•

•
•

•••

•

••
••

•

•

••

••••
•
•
•
•
•
•
••

•

•

•
•••

•
•
•
••
••
•
•

•

•

•

•
•0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90

R
an

ge

R
at

e
E

rr
or

(f

t/
se

c)

Time (sec)
Figure 3 Range Rate Error during Engagement.

7

•

••

•

•

•

•
•
•

•
•

•

•

•

•

•

•
•

••
•

•
••
•

•

•

•
•

•

•

•

•

•

•

•

•
•
•

•

•

•

••
•
•
•
•

•
•

•

••

•
•

•
•••

••
•
••
•
•

•

•

•

•••
•••

•
••

•

•

•

•

•

•

•

•
•
•
•
•

•

•

•
•••

•
•

•

•

•

•
•

•

•

•

•
•

•

•

••

•

•

••
••
••
•

•

••
•
•

•

•
••

•
•
•

•

•

•

•
•

•
••••

•
•

•

•
•
•

•

•

•

•

••

•

•

•

•

••
•
•

•
•
•
•

••

•

•

•
•

•

•
•

•

•
•••

••

•

•
•

•

•

•
••
•

•

•

•

•••

•

•

••

•

•

•

•

•

•

•

•

•

•
••

•

•

•

•
••

•

•

•

•

•

•

•
••••

•
•
•
••

•

•

•
•
•

•

•
•

•
•
•

•

•

•
•
•

•
•

•
•

•

•
•

•

•

•
•

•

••
•

•

•

•

•

•

•

•

•

•

•

•
•
••

•

•

•
••

•

••

•
•

•

••

•

•
•

•

•

•
•

•

•
•

•

•

•

•

•••

•

•

•
•

•

•

••

•

•

•

•

•

•

•

••

••

•

•

••

•

•

•
••
••

•
•

•
•
•

•

•

•
•

••••
••
•
•
••
••

•

•
••••••••••••••

•

•

•

•0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

D
ev

ia
ti

on

A
ng

le

E
rr

or

(d
eg

)

Time (sec)
Figure 4 Deviation Angle Error during Engagement.

•

•

•

•

•

•

•
•

•
•

•

•
•••

•
•

•

•

•
•
••
••
•
••
•
•••

•

•
•
••
••

••
•
••
•
••
•
•••••

•
••
•••

•••
••
•••••

•••••••
•
•
•

•

•

••
•

•
••
••••
•
•
•
•
•
•
•

•
••

•
•

••••
•

•
••
••

•

••
••

•
••

••
••••

•
•
•

••

•

•
••
•
•

•
••

•••
•
•
••

•
•

••

•
•
••

•
•

•

•
••
•

•

•
•
•
•

•

•

•

••
•

•••
•••••

••

•
•

•
••
•

••
••••••

•

••

•
•

•
•
••

•
•

•

•

••
••

•

•

••
•

•

•

•
•
••
•

•
•

••

•

•

•
•
•

•

•

••

•

••
•
•
•

•

•
•••

•

•••

•
••
•

•

•

••

•

•

•

•

•

•

•
•

•
•
•

•
•

••••

•

•
••
•

••

•
••

••

••
•
•

•

•

•
•

••

•

•

•
••

•
•
•

•

•

••••

•

•
•

•

•

•••

•

•

•••

•

•
••
•
•

•
••

•
•
•

••

••

•
•
•

•

•••••••
••••••••

••••
•••••••••

•
•••

•0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

L
in

e-
of

-S
ig

ht

A
ng

le

E
rr

or

(d
eg

)

Time (sec)
Figure 5 Line-of-Sight Angle Error during Engagement.

2.3 Active Throttle Controller

A rule-based Active Throttle Controller was
developed to adjust the throttle setting based on the
current mode of operation. The throttle controller is
called at the start of each decision interval and can set
the throttle to any position between idle and full
afterburner [0.0 = flight idle, ..1.0 = military power,
..2.0 = full afterburner]. The throttle controller uses
the throttle control rule–base (appendix C), the current
mode of operation, and the relative geometry
information to select either a target acquisition mode, a
fine tracking mode, or a target or missile avoidance
mode. Each mode has a set of specific throttle control
rules that are used to maximize system performance in
that mode.

The active throttle controller uses the same data
described for the situation assessment module, and so,
incurs the same estimation errors. Using the results of
the 32 engagements discussed in the previous section,
the resulting errors in the selected throttle position
have been evaluated. The throttle setting chosen by the
active throttle controller was within +/-5% of the
correct setting (the position selected given exact data)
in 95.8% of the cases tested (7369 total). Table 3
shows the distribution of these errors around the correct
throttle command. For this table, E is the error band
(in %) of the throttle position, and P is the percentage
of the test cases which fall within +/- E of the correct
position.

8

Table 3. Active Throttle Controller Error
E P
5 95.81

10 95.83
15 95.90
20 97.15
50 99.38

2.4 Maneuver Scoring Module

The Paladin Maneuver Scoring Module knowledge
source is a FORTRAN subroutine that uses a set of
fuzzy logic questions with responses ranging from [-
1.0 = Negative, ..0.0 = Neutral, ..1.0 = Positive] and
the mode-specific scoring weight vector selected by the
situation assessment module to score each of the trial
maneuvers. For each trial maneuver evaluated the
predicted positions for both the opponent and the
Paladin aircraft are computed. The position of the
opponent is extrapolated using a quadratic curve fit
based on the time history of the opponent aircraft's
trajectory as previously described. The future position
of the Paladin aircraft is determined by predicting the
result of executing the control commands for each
candidate trial maneuver.

Once the relative geometry between the two future
aircraft positions is calculated, the score for the
maneuver is determined by computing the responses to
the seventeen fuzzy logic questions, applying the
selected scoring weight vector, and then summing the
responses to generate a single numeric score. After all
of the trial maneuvers have been evaluated, the highest
scoring maneuver is selected and the associated control
commands are executed.

3 Engagement Scoring Metrics

Four scoring metrics are currently used to evaluate
each engagement. All metrics are computed at the
aircraft simulation update rate of 32 times per second.
The first metric computes the total time that each
airplane has its weapons locked on its opponent, the
probability that any weapons fired will hit the
opponent, the distance between the opponents, the
angle-off, and the deviation angle. The results are
printed in a table format at the completion of each run.

The second scoring metric computes a Probability
of Survival (PS) using the data computed by the first
metric. The probability to hit for an all–aspect missile
and for the cannon are computed using the range and
LOS angle to the opponent. The probability to hit for
a tail–aspect missile is computed using the range, the
LOS angle to the opponent, and the LOS angle off.

Aircraft missiles are treated as limited resources and a
probability to hit of 0.65 is required to launch the first
missile. The probability to hit threshold increases by
0.05 for each missile launched. An estimated flyout
time (the time it will take a missile to reach it’s target)
for each missile is computed based on the launch
parameters, and another missile cannot be fired until
the flyout time has passed. The Ps for an aircraft then
is

Ps = 1.0 - Σ [probability to hit * Ps(f)]
(7)

summing over each weapon fired by the opposing
aircraft. Ps(f) represents the Ps of the aircraft firing the
weapon at the time the weapon was fired.

The third scoring metric attempts to determine a
Lethal Time (LT) advantage for each engagement.
Lethal time advantage attempts to weigh the lethality
of each distinct type of weapons lock time.

LT =

Paladin Gun - Opponent Gun
2

 +

(2 * (Paladin Tail–Aspect - Opponent Tail–Aspect)) +

(Paladin All–Aspect - Opponent All–Aspect)
(8)

A positive lethal time value shows Paladin with a
lethal time advantage, and a negative lethal time shows
the opponent with an advantage.

The fourth metric is Time on Offense (TOF).

TOF = (Gun time + All-aspect time + Tail-aspect
time)

(9)

∆TOF is computed as Paladin’s TOF minus the
opponent’s TOF. As for LT, a positive ∆TOF value
shows Paladin with an time on offense advantage, and a
negative ∆TOF shows the opponent with a time on
offense advantage.

4 Paladin Testing Procedures

Paladin is currently being tested in the TMS using
six d.o.f. aircraft dynamics, and in the DMS using five
d.o.f. aircraft dynamics. TMS testing is done in a non-
real-time, batch mode environment against a baseline
TDG. Each set of test conditions consists of 32 sets of
initial aircraft conditions. The initial altitudes,
airspeeds, and the separations between the two aircraft

9

are adjusted to provide representative coverage of the
within–visual–range air combat arena. The largest
initial aircraft separation currently being tested (5 nm)
places the aircraft at the transition point between
beyond-visual-range and within-visual-range air
combat.

The scoring metrics discussed earlier are reviewed
after each set of test runs and the data are used to tune
the mode specific scoring weights and test the
completeness of the knowledge bases. Although the
metrics are helpful, no single metric has been
developed that can completely measure the performance
of an aircraft in the engagement. In past test
engagements an aircraft could score significant amounts
of weapons lock time after it had been "killed." This
phenomenon adversely affected several of the scoring
metrics. To correct this problem all engagements are
now ended when the probability of survival for either
aircraft is less than 0.30.

After initial adjustment of the scoring weights, the
set of initial conditions is expanded to 320 initial
conditions by modifying the initial separation between
the airplanes, the initial altitudes, and the initial Mach
numbers. This stepwise refinement process provides
the large sets of results required to achieve global
system improvements across the total within–visual–
range air combat environment.

A baseline version of Paladin is currently being
tested in the DMS using a 5 d.o.f. aircraft model. The
aircraft model lacks both the extra degree of freedom
(side force) as well as an accurate representation of the
aircraft’s rotational dynamics throughout the complete
flight envelope. The baseline Paladin system, the
Computerized Logic for Air Warfare Simulation
(CLAWS), is a blackboard system that contains the
situation assessment module, the active throttle
controller, and a reduced set of situationally dependent
trial maneuvers. This reduced set of trial maneuvers
and the simplified aircraft model are used to insure real-
time performance in the DMS.

The development of CLAWS has made it possible
to evaluate the tactical decision generation software
against human pilots in a realistic air combat
environment. This capability has allowed experienced
pilots to interact with the system and comment on its
performance and suggest improvements. The pilots'
comments and suggestions are then the basis for
changing the TMS experimental version of Paladin.
These changes are tested and refined before being
included in the baseline system.

5 Concluding Remarks

Paladin has been developed to study within-visual-
range air combat engagements. The system
incorporates modern airplane simulation techniques,
sensors, and weapons systems. The system was
developed using several concepts first outlined in the
Adaptive Maneuver Logic program. The use of
knowledge–based systems and Artificial Intelligence
(AI) programming techniques allows Paladin to address
air–to–air combat and agile aircraft in a clear and
concise manner. The ability to integrate Paladin into
the Differential Maneuvering Simulator offers a unique
opportunity to evaluate the performance of the AI-based
Paladin software in a real-time tactical environment
against human pilots.

The knowledge–based Situation Assessment
module and the Active Throttle Controller allow
Paladin to function in the complex modern air–to–air
combat environment. Paladin is able to model aspects
of the complex decision making–processes used by
human pilots through the use of the Situation
Assessment knowledge–based system. The use of
distinct modes of operation allows Paladin to model
complex air–to–air combat tasks and generate tactical
decisions in real–time. Paladin presents an excellent
opportunity to evaluate the use of AI programming
techniques and knowledge-based systems in a real-time
environment.

References

1. Goodrich, Kenneth H; McManus John W. :
"Development of A Tactical Guidance Research
and Evaluation System (TiGRES)." AIAA Paper
#89-3312, August 1989.

2. McManus John W.; Goodrich, Kenneth H. :
"Application of Artificial Intelligence (AI)
Programming Techniques to Tactical Guidance
for Fighter Aircraft." AIAA Paper #89-3525,
August 1989.

3. Goodrich, Kenneth H; McManus John W. : "An
Integrated Environment For Tactical Guidance
Research and Evaluation." AIAA Paper #90-
1287 May 1990.

4. Burgin, G. H., et al.: An Adaptive
Maneuvering Logic Computer Program for the
Simulation of One-on-One Air-to-Air Combat.
Vol I and Vol II. NASA CR-2582, CR-2583,
1975

1 0

5. Meyer, Bertrand. Object-oriented Software
Construction. Ed. C.A.R. Hoare. Prentice Hall
International Ltd, 1988.

6. McManus John W.: "A Parallel Distributed
System for Aircraft Tactical Decision
Generation” In Proceedings of the 9th Digital
Avionics Systems Conference, 1990, pp. 505 –
512

